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ABSTRACT

An important source mechanism of fan broadband noise is the interaction of rotor
wake turbulence with the fan outlet guide vanes. A broadband noise model that utilizes
computed rotor flow turbulence from a RANS code is used to predict fan broadband
noise spectra. The noise model is employed to examine the broadband noise
characteristics of the 22-inch Source Diagnostic Test fan rig for which broadband noise
data were obtained in wind tunnel tests at the NASA Glenn Research Center. A 9-case

matrix of three outlet guide vane configurations at three representative fan tip speeds are
considered. For all cases inlet and exhaust acoustic power spectra are computed and
compared with the measured spectra where possible. In general, the acoustic power levels

and shape of the predicted spectra are in good agreement with the measured data. The
predicted spectra show the experimentally observed trends with fan tip speed, vane count
and vane sweep. The results also demonstrate the validity of using CFD-based turbulence
information for fan broadband noise calculations.

INTRODUCTION

Owing to the success of fan tone noise

reduction techniques [1], fan broadband noise is
now widely acknowledged as the next major
obstacle to be overcome in attempts to reduce
aircraft engine noise. But, tmlike tone noise, the
sources of fan broadband noise are many and most
are not as well tmderstood. In response to this
challenge a number of theories [2-5] have been
devised to help elucidate the nature and
characteristics of fan broadband noise. These

theories require flow turbulence characteristics

(i.e., spectrum, intensity, length scales, etc.) as
input for computing noise spectra. Typically, such
information is available from an experiment [6] or

is simply guessed at to provide the best fit of the
predicted noise spectra to the measured ones. An
alternative approach is to compute the turbulence
characteristics using a Reynolds-Averaged Navier-
Stokes (RANS) type calculation, since that would
provide a true prediction capability.

This paper presents one such attempt that

combines predicted flow turbulence characteristics
obtained from a turbomachinery CFD code with a
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fan broadband noise theory to compute fan noise
spectra. The flow code, called APNASA [7], is a
three-dimensional Navier-Stokes solver with an

improved k- e turbulence model [8]. The noise
code is a revised and enhanced version of an

analytical noise prediction theory originally
developed by Ventres et al. [9]. The testbed is a
1/5-scale model of a representative high bypass
ratio turbofan engine for which extensive
aerodynamic and acoustic data were obtained [10-
12]. Only the broadband noise produced by the
interaction of fan wake turbulence with the stator

outlet guide vanes (OGV) will be considered here.

The data theory comparisons will be done on an
acoustic power basis since the noise theory
furnishes acoustic power predictions only.

The 22-inch diameter model fan was tested in
the NASA Glenn Research Center's 9'x15'

acoustic wind tunnel. The fan has 22 blades and a

design tip speed of 1215 ft/sec. The baseline OGV
has 54 radial vanes and represents a conventional
"cut-off' stator design (i.e., the blade passing
frequency is cut off). The low-count OGV is a
"cut-on" concept which has only 26 radial vanes
but has the same solidity as the baseline stator. The
smaller vane count was selected to reduce

broadband noise [13]. The swept OGV has 26
swept vanes (with 30 degree sweep) and was
designed to minimize the blade passing frequency
tone penalty associated with a cut-on design.

The aerodynamic and acoustic tests were
conducted over a wide range of fan operating

conditions for each of the three OGV packs. For
the purposes of the current work, however, only
the speeds corresponding to the noise certification
points will be discussed. The relevant fan operating
conditions are listed in Table 1.

Power Corrected Corrected Fan

Setting Fan rpm Tip Speed, fps

Approach 7,808 750
Cutback 11, 074 1,060

Takeoff 12, 656 1,215

Table 1: Fan operating conditions of interest.

In what follows, a summary of the analysis
tools used in this work will be presented followed

by a discussion of the theoretical results and their
comparison with measured data (where possible).
The paper concludes with a summary of important
results.

ANALYSIS

The input for the noise prediction was
generated by means of a series of CFD simulations
of the fan rotor coupled with the fan outlet guide
vane. The code used to generate the fan flow field
is APNASA (see Ref. 7), which solves for the time
average flow field in a typical passage of a blade
row embedded within a multistage turbomachine.
The simulations are three-dimensional and include

the effect of viscosity. A modified k-e
turbulence model (see Ref. 8) was used to account
for the effect of turbulence mixing. However,
before these CFD simulation could be undertaken

it was necessary to establish the fan rotor geometry
at tests conditions.

Fan Running (Hot) Shape

Fan rotors un-twist as they are run-up in
rotational speed. It is well known that the effect of
rotation on fan rotor shape has a non-trivial impact
on aerodynamic performance. Thus, any CFD

simulation of the fan rotor based on fan geometry
other than the running geometry would be
pointless. For the present study the chosen fan
operating conditions included off-design
conditions. Thus, a structural analysis was
undertaken to determine the fan shape at the
conditions corresponding to those of the test
matrix. This analysis was conducted using the

SABER [14] coupled aero/structural analysis
system. An outline of the SABER system is
presented in Figure 1. Starting with the fan rotor
shape as manufactured (CAD geometry definition
of the cold shape) the SABER system generates
input for a structural analysis code. Included in the
input is the rotational speed of the fan rotor.

Output from the structural analysis code is
post-processed to generate a flow field grid for a
CFD simulation. The output of the CFD simulation
is post-processed by SABER to yield the pressure
and temperature distribution on the fan rotor
surface. This information is supplied to the
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structural analysis pre-processor, which then

updates the input information to the structural

analysis code and the cycle repeated until

convergence (i.e., no significant change in fan

rotor geometry) is obtained.

The transfer of information between the

various elements of SABER is by means of NIGES
and GGA files. The surface definition of fan rotor

geometry, pressure and temperature distribution is

in the form of NURBS [15-17].

The fan rotor geometry is established at

running conditions (hot shape) along with its flow

field upon convergence of this iterative process.

Upon convergence of the iterative cycle within

SABER the output takes full account of centrifugal

loading, loading due to aerodynamic forces, and

the temperature imposed on the fan rotor by the
flow field.

The execution of SABER parallels the process

used in a fan rotor mechanical design. A total of

three coupled structural aero analysis were

executed corresponding to the tip speeds of interest

(i.e., the approach, cutback and takeoff conditions).

Using the computed fan hot shapes, fan speed

lines (constant corrected speed) were established

using APNASA for the nine (3 speeds x 30GV)
test cases.

Rotor Flowfield

The CFD grid has 407 grid cells in the axial

direction, 51 grid cells in the radial direction and

51 grid cells in the azimuthal direction. Two views

of the grid used in the flowfield simulations are

shown in Figures 2 and 3. Figure 2 shows the

meridional grid definition where locations of the

fan rotor and outlet guide vane are noted. Figure 3

shows the fan rotor blade-to-blade grid layout at

midspan. The streamline grid plane was designed

to nearly coincide with the trajectory of the rotor
wake in order to reduce numerical diffusion of the

fan wakes.

Figure 4 shows the computed axial velocity

field associated with the rotor at 75% of span at the
takeoff condition. The wakes are well defined all

the way to the leading edge plane of the outlet

guide vane. Figure 5 shows the corresponding

distribution of turbulent kinetic energy. It too is

well defined to the leading edge plane of the outlet

guide vane.

Figure 6 shows a comparison of the CFD

results for the baseline configuration compared to

data at the takeoff condition (see Ref. 6). The plots

show the comparisons for an axial location 2

inches downstream of the rotor trailing edge (at the

tip). Shown are the time averaged axial velocity,

absolute tangential velocity and a measure of the

intensity of the turbulent field. The agreement

between the computed results and the

corresponding measured results is good. The

agreement extends to the end-wall region and

includes the region of flow associated with the fan

rotor tip clearance flow.

The turbulence intensity and length scale
derived from the CFD simulations at the stator

leading edge were used to estimate the frequency

spectrum of the turbulent field impinging on the

outlet guide vane. This information and the time

average flow field of the outlet guide vane formed

the input to the acoustic predictions. It should be

noted that the input was used "as is" and no

adjustments were made to the input to achieve a

better agreement with data.

Rotor Wake Turbulence - Stator Noise Model

The fan broadband noise prediction model

used for this study is based on a theory developed

by Ventres et al. (see Ref. 9). However, significant

corrections, revisions and enhancement were made

to the theory and a new code was written to take

full advantage of the flow turbulence information
available from the APNASA solutions. Details of

the modified theory and the associated computer

code will be reported in a future paper. Here, only

salient features of the noise model are presented.

Predicated on a modal description of the noise

field inside the fan duct, the theoretical model

relates the expected values of modal acoustic

power levels to the expected values of the incident

turbulence. The turbulence is assumed locally

isotropic at each radius with its statistics

parametrically dependent on the radius. The

unsteady aerodynamic response is based on a
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strip-wise description that relates the OGV
unsteady pressure distribution at each radial
location to the incident wake turbulence. The

underlying unsteady response is the same as that
used for tone calculation [18]. The resulting Quasi-
3D distribution of the expected values of vane

unsteady pressure field are then related to the
estimates of the modal power via the classical
Green's function formulation. The end results is

the mode power level spectral density, Pmn(O3),

which in short-hand notation may be written as

p o( o)=j'ICmo( , O]= =0mo(r)W(r, o)
r_

dr (i)

where Cmn is the chordwise integral of the

unsteady pressure distribution at each radius, Omn

the annular duct mode shape, and the function
is related to spectrum of the incident turbulence.

It should be pointed out that in deriving
Eq. (1), the OGV is modeled as an ensemble of
zero thickness flat plates in an infinite hard-wall
annular duct containing a uniform axial mean flow.
The parameters controlling the aerodynamic

response are the absolute Mach number of the
mean flow and vane chord, vane count and stagger
angles at each radius (i.e., strip). In particular, in
this work, the vane cascade stagger angle at each
radius is defined as a weighted average of the
airfoil section camber line with the leading edge
receiving more weight as compared to the trailing
edge in recognition of the fact that high-frequency
response of the vane is concentrated near the
leading edge. In addition to the aero input, the

noise calculations also require the r.m.s, amplitude
of the upwash turbulent fluctuations and integral
length scales of turbulence in the axial, tangential
and radial directions. Implicit in the derivation of
Eq. (1) is the additional assumption that the radial
integral scale is small compared with the span of
the vane. Furthermore, the circumferential
distribution of the turbulence intensity is taken to
be of the form

"' _ 2,L2uw_,r) e w (2)

t t

where u b and u w are the background and wake

turbulence intensities at each radial strip, and _ is

the distance across one blade pitch measured in the
direction normal to the mean wake centerline. The

P P

parameter Lw will be defined shortly, ub and uw

are computed from the CFD solution via

u'= (2k/3) lj2 (3)

where k is the computed local turbulence kinetic

energy of turbulence. Eq. (2) is in excellent
agreement with the pitch-wise distribution of

computed intensity. Lw is chosen to be an integral

length which multiplied by u_ equal to the area

contained under the computed profile (Figure 7).

The distribution described by Eq. (2) is assumed to
apply to all fan blade passages so that the pattern
repeats around the annulus. Note that, this does not
mean that the instantaneous turbulent fluctuations

are the same for corresponding points in passages,
but only their statistics. The same argument of
course applies to the length scales. The length

scales are estimated from the computed RANS
flowfield solutions via

= #3/2 /g (4)

where k and g are the circumferentially averaged

turbulence kinetic energy and dissipation rate.

Defined in this manner, g is the average size of the
largest energy containing eddies in the flow. The

parameter g represents the longitudinal and g/2

the lateral integral length scales of the incident
turbulence (i.e., the isotropic assumption).

The variations (as a functions of radius) of the
local Mach number, vane stagger angle, incident
turbulence intensity and integral length scales, and
the effective width of the intensity profiles are
inputs for noise spectra computations. For each
case considered in this work, this information was

extracted from the corresponding CFD solution.

Measured Noise Spectra for Comparisons

Farfield noise spectra were measured for all
three OGV configurations as a function of fan tip
speed (see Ref. 12). Using an acoustically treated
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"barrier"wall, thecontributionsof the inlet and
exhaustnoiseto the farfield spectracouldbe
separatedexperimentally.

Additionally,sincethemodelfancouldberun
in a"rotor-alone"configuration(seeRef.11),it is
alsopossibleto isolatethecontributionof OGV
noiseby subtractingthe rotor-alonecontribution
fromtherotorplusstatorcontributiononapower
basis(seeFigure8). Figure8ashowsmeasured
spectrumof total acousticpower (inlet plus
exhaust)for rotor-statorcombinationfromwhich
rotor-alonecontributionis subtractedto get the
OGVpowerlevel.Figure8bshowstheuseofthe
measurementswiththebarrierwall (whichblocks
the exhaustradiationreachingthe inlet). Here
again,rotor-statorcombinationand rotor-alone
spectraareavailable.Thisenablestheseparationof
OGVinlet noisespectrum.Subtractingthe inlet
contributionfromtheinletplusexhaustspectrum
for OGVin Figure8a,the exhaustspectrumof
OGValoneis obtained(seeFigure8c).Inpractice,
however,thatprovedproblematicfor all but the
approachcondition,sinceat highfantip speeds,
therotor-alonelevelstendto behigherthanthe
stage(i.e.,rotorplusstator)levels.Furthermore,
sincethecurrentnoisemodeldoesnotaccountfor
the swirl betweenthe rotor and statoror the
transmissionlosseffectsthroughtherotor,inlet
noisepredictionsdonotreflectthecorrectphysics
andassucharenotsuitabledirectforcomparisons
withdata.

Therefore,the data-theorycomparisonsare
restrictedto the exhaustnoiseat the approach
speedonly.However,predictedtrendswiththefan
tipspeedforboththeinletandexhaustatthethree
speedsarepresented.

RESULTS AND DISCUSSION

For all nine cases the inlet and exhaust duct

acoustic power levels were computed for
frequencies up to 50 KHz. This range corresponds
approximately from 0.5BPF to 11BPF for takeoff,
0.5BPF to 13BPF for cutback, and 0.5BPF to
18BPF for approach.

The spectral calculations were typically done
at 0.5BPF increments, since the number of cut-on

modes that must be computed increases so rapidly
that smaller frequency increments would have
significantly increased the computational time. In
the following figures, the symbols denote the
frequency points at which the spectral calculations
were actually performed and the lines through the

symbols are curve fits to provide an idea of the
spectral shapes.

It should be pointed out that, occasionally, the
computed amplitude of the aerodynamic response
of one of the strips would be inordinately large due
to local cascade resonance condition. This, in turn,
would lead to a "wild" point in the associated
acoustic response. By slightly adjusting the
aerodynamic input parameters, the resonance point

could be avoided. However, in this paper the
occasional wild point has been eliminated from the
computed spectra. In a 3D response, such local
resonance conditions would not occur.

a. Comparisons with the measured spectra

First, the data-theory comparison is presented

in terms of the acoustic power spectra for the three
stator configurations. Figures 9 through 11 show
the predicted and measured spectra for the baseline
54 radial vanes, 26 radial vanes, and 26 swept
vanes configuration, respectively. Note that the
measured spectra contain blade passing frequency
(BPF) tone harmonics. While the BPF tone is

cutoff (absent) for the baseline case, it is cut-on
(present) for the other two cases. The current
predictions have only the broadband noise
component. The predicted shape of the spectra is in
fairly good agreement with the measured spectra
including the high frequency fall off. However,
there is an under-prediction of levels, which may
arise from several factors. The main one is the fact

that the measurements may have contributions
from additional noise sources while the predictions
account for only the wake turbulence. Also, at
high frequencies quadrupole noise may become
important, as discussed by Mani et al. [19], and
should be included to improve the prediction.

b. Effect of fan tip speed on acoustic power spectra

The variation of acoustic power with fan tip
speed is shown for the 54 radial vane configuration
in Figures 12 and 13. The figures show inlet and
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exhaustacousticpowerspectrafor thethreetip
speedsof interest.Thespectrashowtheexpected
trendwiththetipspeed.

c. Inlet and exhaust noise spectra

The computed inlet and exhaust acoustic
power spectra are compared in Figure 14 for the 54
radial stator vane configuration at takeoff
condition. The inlet noise is substantially lower
than that of the exhaust as observed in the wind
tunnel measurements.

d. Variation of noise with vane number

As the vane count is reduced, the rotor-wake

turbulence generated broadband noise is expected
to reduce substantially. The cut-on fan design is
expected to produce less broadband noise than the
cut-off design to counteract the cut-on tone levels.

Figures 15 and 16 show inlet and exhaust
power spectra for 54 radial vane and 26 radial vane
configurations at approach. The acoustic power for

26 radial vanes is substantially lower than for the
54 radial vanes configuration. The power is

expected to vary as 10 log N 2 (see Ref. 9) where

N v is the vane count. This should result in 6.3 dB

reduction in power levels for the 26-vane OGV
compared with the 54-vane OGV. The predicted

reduction in power due to the reduction in vane
number is higher than expected at high
frequencies. At frequencies lower than 5.5 kHz, the
noise levels produced by the two configurations
are not significantly different probably because at
low frequencies there are additional noise sources
present, which are not modeled in the present
theory. A similar trend was observed in Boeing

broadband noise experiments (see Ref. 13).

e. Effect of vane sweep

Vane sweep has been found to result in
substantial reduction in tone noise levels compared
to the radial vane configuration [20]. Woodward
(see Ref. 12) found that the vane sweep reduces, in

addition, the broadband noise by one to two
decibels at certain speeds. The measured spectra
for the approach exhaust radiation show (see
Figure 17) a small reduction in noise level in the

low frequency range (<10 kHz) due to vane sweep.
It should be emphasized that if tones are removed
from the measured spectra the reduction will be
even smaller. The predictions do not show any
decrease in acoustic power levels for the 26 swept
geometry compared to the 26 vane radial (see

Figure 18).

f. Acoustic power as a function of mode order m

Figure 19 shows the inlet and exhaust acoustic
power as function of circumferential mode m order
for frequencies from 3BPF, 5BPF and 7BPF. The
number of cut-on circumferential mode orders (m)
and the number of cut-on radial mode orders (n) in
each m-order increase linearly with frequency (see

Figure 20). In general, the peak acoustic power
level reduces with increases in frequency. At
frequencies higher than 5BPF, the fall off with
increasing m order is higher for the positive m
orders than for negative m orders.

g. Cutoffratio and acoustic power

Sometimes it is helpful to look at the acoustic
power radiated as a function of cutoff ratio and that
is particularly done in design and tradeoff studies
[21]. Figure 21 shows the variation of acoustic
power as a function of cutoff ratio for exhaust
radiation at approach for two frequencies, 4BPF
and 6BPF. The symbols denote different m orders

and five n orders (n = 0 4) are included in the
plot. Since no effect of flow swirl is included in the
current model, the same number of co-rotating and
contra-rotating modes are cut-on at each
frequency. The acoustic power decreases sharply
as the cutoff ratio is increased and eventually
reaches nearly a plateau beyond a cutoff ratio of
three for both frequencies.

CONCLUDING REMARKS

The rotor wake turbulence stator interaction

broadband noise has been computed for
representative fan operating conditions for three
fan stage configurations. The computations employ
the wake flow turbulence information from

accurate computational fluid dynamic solutions.
The predicted noise spectra show the observed
trends with fan tip speed and vane count. The
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predicted acoustic power levels and shape of the

spectra show reasonable agreement with the

measured spectra for the exhaust noise at approach
condition.
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Figure 1. Outline of SABER system.

Figure 3. Blade-to-blade view of the

midspan.
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407 Figure 4. Contour lines of the axial velocity

showing the blade wake evolution in

the blade-to-blade plane at 75% span.

Figure 2. A meridional view of the

computational mesh showing the
rotor and baseline stator.

Figure 5. Contour lines of the turbulence

kinetic energy at 75% span.
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Figure 6. Comparison of experimental (top) and
CFD (bottom) results for the baseline
configuration at takeoff at 2 inches
behind the rotor.
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A representative turbulence intensity
profile. Dashed line denotes the CFD
solution and the solid line the fit using
Eq. (2).
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separation. Baseline: Approach.
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